91UP公务员行测
您所在位置:数量关系 > 数学运算 > 容斥原理问题

知识框架

数学运算问题一共分为十四个模块,其中一块是容斥原理问题

在公务员考试中,根据集合的个数,容斥原理问题一般只有两集合容斥关系三集合容斥关系两种类型,两集合容斥关系一般只要采用公式法就可轻松解决,三集合容斥关系又可分为标准型、图示标数型、整体重复型三类,对应解题方法分别是公式法、文氏图法、方程法。无论集合中的元素怎么变化,同学只要牢牢把握这两类型,就能轻松搞定容斥原理问题。

核心点拨

1、题型简介

容斥原理是在不考虑重叠的情况下,先将所有对象的数目相加,然后再减去重复的部分,从而使得计算的结果既无遗漏又无重复。掌握容斥原理问题,可以帮助同学们解决多集合元素个数的问题。

2、核心知识

(1)两个集合容斥关系

(2)三个集合容斥关系

A、标准型公式

    B、图示标数型(文氏图法)

画图法核心步骤:

1 画圈图;

2 数字(先填最外一层,再填最内一层,然后填中间层);

③做计算。

C、整体重复型

A、B、C分别代表三个集合(比如“分别满足三个条件的元素数量”);

W代表元素总量(比如“至少满足三个条件之一的元素的总量”);

x代表元素数量1(比如“满足一个条件的元素数量”);

y代表元素数量2(比如“满足两个条件的元素数量”);

z代表元素数量3(比如“满足三个条件的元素数量”)。

3、核心知识使用详解

(1)容斥原理问题要清楚容斥原理公式中各项的实际含义,与题中的数据准确对应。

(2)容斥原理问题的关键在于把文字转化为文氏图,在图中应准备反应题中集合之间的关系。

(3)容斥问题的难度在于题中集合可能较多,某些集合之间的关系可能不确定,这需要仔细的分析,抓住不确定的。

夯实基础

1. 两个集合容斥关系

例1:(2007年中央第50题)

小明和小强参加同一次考试,如果小明答对的题目占题目总数的,小强答对了27道题,他们两人都答对的题目占题目总数的,那么两人都没有答对的题目共有(   )。

A. 3道
B. 4道
C. 5道
D. 6道

D
[题钥]

由于不知道这次考试题目的总数,所以可先设题目总数即元素总量

“小明答对的题目占题目总数的”,相当于集合A

“小强答对了27道题”,相当于集合B为27。

“他们两人都答对的题目占题目总数的”,相当于集合

“两人都没有答对的题目”,相当于求集合

[解析]

根据题意,

    确定元素总量W

    确定集合A

    确定集合B:27;

    确定集合

    代入两集合公式

因为均为题数,须均为正整数,所以必须为12的倍数,而且由选项知:3≤≤6

当W=12时,=-16,不合题意;

当W=24时,=-5,不合题意;

当W=36时,=6,符合题意。

所以,两人都没答对的题目为6道。

因此,选B。

2. 三个集合容斥关系

例2:(浙江行测真题)

某专业有学生50人,现开设甲、乙、丙三门选修课。有40人选修甲课程,36选修乙课程,30人选修丙课程,兼选甲、乙两门课的有28人,兼选甲、丙两门课的有26人,兼选乙、丙门课程的有24人,甲、乙、丙三门课程均选的有20人,问三课均未选的有多少人?(    )

A. 1人
B. 2人
C. 3人
D. 4人

B
[题钥]

“某专业有学生50人”,相当于元素总量W为50。

“有40人选修甲课程”,相当于集合A为40。

“36选修乙课程”,相当于集合B为36。

“30人选修丙课程”,相当于集合C为30。

“兼选甲、乙两门课的有28人”,相当于集合=28。

“兼选甲、丙两门课的有26人”,相当于集合=26。

“兼选乙、丙门课程的有24人”,相当于集合=24。

“甲、乙、丙三门课程均选的有20人”,相当于集合=20。

“问三课均未选的有多少人?”相当于求集合

[解析]

根据题意,

确定元素总量W:50

确定集合A:40

确定集合B:36

确定集合C:30

确定集合:28

确定集合:26

确定集合:24

确定集合:20

代入三集合标准型公式

=50-(40+36+30-28-24-26+20)

=2

因此,选B。

例3:(国家行测真题)

某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?(    )

A. 120
B. 144
C. 177
D. 192

A
[题钥]

观察题目,属于三个集合容斥关系中的标数型问题,可采用文氏图法求解。

[解析]

本题属于标数型问题,可采用文氏图法求解,如下图所示。

图中,黑色部分是准备参加两种考试的学生,灰色部分是准备参加三种考试的学生。计算总人数时,黑色部分重复计算了一次,灰色部分重复计算了两次,所以接受调查的学生共有:

63+89+47-24×2-46+15=120人。

因此,选A。

例4:(浙江2004-20)

某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(    )

A. 15人
B. 16人
C. 17人
D. 18人

A
[题钥]

“某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组”,相当于元素总量W为35。

“参加英语小组的有17人”,相当于集合A为17。

“参加语文小组的有30人”,相当于集合B为30。

“参加数学小组的有13人”,相当于集合C为13。

“如果有5个学生三个小组全参加了”,相当于元素数量3为5。

“问有多少个学生只参加了一个小组?”,此类题目属于整体重复型问题,可采用方程法求解。

[解析]

根据题意,

参加一个小组的人数为x,即元素数量1为x;

参加两个小姐的人数为y,即元素数量2为y;

确定元素总量W:38

确定集合A:17

确定集合B:30

确定集合C:13

确定元素数量3:5

代入公式列方程

因此,选A。

进阶训练

1.两个集合容斥关系

例5:某校学生参加数学竞赛的有120名男生,80名女生,参加英语竞赛的有120名女生,80名男生。已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人?(    )

A. 15
B. 20
C. 25
D. 30

A
[题钥]

假设260名学生当中有m名男生n名女生,同时参加了教学和英语竞赛的女生人数为x。

对于男生:

m名男生”,相当于元素总量为m。

“参加数学竞赛的有120名男生”,相当于集合为120。

“参加英语竞赛的”,“80名男生”,相当于集合为80。

“其中75名男生两科竞赛都参加了”,相当于集合为75。

对于女生:

n名女生”,相当于元素总量为n。

“参加数学竞赛的”、“80名女生”,相当于集合为80。

“参加英语竞赛的有120名女生”,相当于集合为120。

同时参加了教学和英语竞赛的女生人数,相当于集合为x。

“已知该校总共有260名学生参加竞赛”,可知260名学生都参加了竞赛,没有“数学竞赛和英语竞赛都没参加”的情况。相当于集合集合为0。

[解析]

根据题意,

260名学生当中有m名男生n名女生

同时参加了教学和英语竞赛的女生人数为x。

对于男生:

确定元素总量:m

确定集合:120

确定集合:80

    确定集合:75

确定集合:0

对于女生:

    确定元素总量:n

    确定集合:80

    确定集合:120

    确定集合:x

确定集合:0

    男女生总数,即m+n=260。

    代入两集合公式列方程

    则有

即同时参加了教学和英语竞赛的女生人数为65。

由于参加数学竞赛的女生有80名,

则参加数学竞赛而没有参加英语竞赛的女生人数:

80-65=15名。

因此,选A。

2.三个集合容斥关系

例6:(广州2007-33)

如右图所示,每个圆纸片的面积都是36,圆纸片A与B、B与C、C与A的重叠部分面积分别为7、6、9,三个圆纸片覆盖的总面积为88,则图中阴影部分的面积为?(    )

A. 66
B. 68
C. 70
D. 72

C
[题钥]

“三个圆纸片覆盖的总面积为88”,相当于元素总量W为88,集合为0。

“每个圆纸片的面积都是36”,相当于集合A、集合B、集合C都为36。

“圆纸片A与B、B与C、C与A的重叠部分面积分别为7、6、9”,相当于集合为7,集合为6,集合为9。

要求“阴影部分的面积”,可先求出集合

[解析]

根据题意,

确定元素总量W:88

确定集合A:36

确定集合B:36

确定集合C:36

确定集合:7

确定集合:6

确定集合:9

确定集合:0

代入公式

=(88-0)-(36+36+36-7-6-9)

=2

“由中间向外围”进行数据标记,进行简单加减运算,如下图过程所示:

据图可知,阴影部分的面积为:22+25+23=70。

因此,选C。

例7:(江苏2009A类-19)

某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是(    )。

A. 69
B. 65
C. 57
D. 46

D
[题钥]

“某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查”、“20人一部也没有看过”,相当于元素总量W为125-20=105。

“有80人看过甲片”,相当于集合A为89。

“有47人看过乙片”,相当于集合B为47。

“有63人看过丙片”,相当于集合C为63。

“其中有24人三部电影全看过”,相当于元素数量3为24。

求解“只看过其中两部电影的人数”,此类题目属于整体重复型问题,可采用方程法求解。

[解析]

根据题意,

只看过其中一部电影的人数为x,即元素数量1为x;

看过其中两部电影的人数为y,即元素数量2为y;

确定元素总量W:125-20=105

确定集合A:89

    确定集合B:47

    确定集合C:63

    确定元素数量3:24

    代入公式列方程

因此,选D。

例8:建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢羽毛球的有1040人,问以上四项球类运动都喜欢的至少有几人?

A. 20
B. 30
C. 40
D. 50

B
[题钥]

观察题目,发现采用公式法,文氏图法都是比较麻烦的。那么逆向考虑,看下各项活动都不喜欢的人有多少人,当这各项活动都不喜欢的人互不重叠的时候,可满足四项活动都喜欢的人最少。

[解析]

根据题意,可知:

不喜欢乒乓球的有:1600-1180=420人;

不喜欢羽毛球的有:1600-1360=240人;

不喜欢篮球的有:1600-1250=350人;

不喜欢足球的有:1600-1040=560人;

若这些人互不重叠则可满足四项运动都喜欢的人最少,为:

1600-(420+240+350+560)=30人。

习题精炼

开始练习

  学完知识点后就应该进行实战演练了,自我检测中的题目是91UP专家团针对本条知识精选出来的典型题目。题 不在多而在于精,在洞察其万变不离其宗的模式,认真完成自我检测可以事半功倍举一反三。

习题精炼

收藏本页