91UP公务员行测
您所在位置:数量关系 > 数学运算 > 计算问题之数的性质 > 整除问题

知识框架

数学运算问题一共分为十四个模块,其中一块是计算问题整除问题是计算问题中数的性质里面的一种。

在公务员考试中,数的整除性质被广泛应用在运算里,同时在行程、工程等问题中,很多时候都需要用到整除性质。整除问题一般只考两个方面,考生只需牢牢掌握这两个方面,便可轻松搞定这类问题。

核心点拨

1、题型简介

数的整除性质被广泛应用在数学运算里。一般情况下题目会给出某个N位数能被M个数整除的已知条件,求解这个N位数。

2、核心知识

如果abc为整数,b≠0,且a÷b=c,称a能被b整除(或者说b能整除a)。

a除以数bb≠0),商是整数或者有限小数而没有余数,称a能被b除尽(或者说b能除尽a)。

整除是除尽的一种

(1)整除的性质

A、如果数a和数b能同时被数c整除,那么a±b也能被数c整除。

如:3654能同时被9整除,则它们的和90、差18也能被9整除。

B如果数a能同时被数b和数c整除,那么数a能被数b与数c的最小公倍数整除。

如:63能同时被37整除,则63也能被37的最小公倍数21整除。

C如果数a能被数b整除,c是任意整数,那么积ac也能被数b整除。

如:58能被29整除,则58乘以任意整数的积,例如58×5,也能被29整除。

D平方数的尾数只能是014569

E若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

F若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

2)整除特征

常见数字整除的数字的特性表

特点

举例

被2整除的数字

末位数为0、2、4、6、8

2能被2整除,故422能被2整除

被3(或9)整除的数字

各位数字之和能被3(或9)整除

1+5+6=12能被3整除,

故156能被3整除

被4(或25)整除的数字

末两位数字能被4(或25)整除

48能被4整除,故348能被4整除

被8(或125)整除的数字

末三位数字能被8(或125)整除

544能被8整除,

故2544能被8整除

被5整除的数字

末位数字是0或5

0能被5整除,故430能被5整除

被7(或13)整除的数字

末三位与末三位之前的数字之

差能被7(或13)整除(对于

位数较多的数字,可反复使用)

322-14=308能被7整除,

故14322能被7整除

被11整除的数字

奇数位数字之和与偶数位数字

之和的差能被11整除。

(9+5)-(6+8)=0,能被11整除,

故9658能被11整除

被10n(n为正整数)

整除的数字

末n位数字为0

560能被10整除

被其他合数整除的数字

将该合数进行因数分解,

能同时被分解后的互质因数整除

被28整除的数字,

需同时被4和7整除。

3、核心知识使用详解

1)三个连续的自然数之和(积)能被3整除。

2)实际生活中很多事物的数量是以整数为基础来计量的,这一点在解题的过程中需要考生自己来发掘。

31能整除任何整数,0能被任何非零整数整除。

夯实基础

1、整除的性质

例1:(2010.浙江)

一个四位数“□□□□”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数“□□□□”中四个数字的和是多少?

  

A. 17
B. 16
C. 15
D. 14

C
[题钥]

问四位数‘□□□□’中四个数字的和是多少?,要先求得这个四位数,而求这个数要根据分别能被151210除尽,且被这三个数除尽时所得的三个商的和为1365”,可设该数为x列方程求解。

[解析]

设这个四位数为x

根据题意列方程:

解得x= 5460

则这个四位数的四个数字之和为5+4+6+0=15

因此,选C

2、整除特征

例2:

六位数x2010y能被88整除,则x,y的取值是多少?

  

A. x-9,y=4
B. x=7,y=4
C. x=9,y=8
D. x=8,y=4

B
[题钥]

六位数x2010y能被88整除,能被88整除的数的特点不明显,故先将88分解为互质的两因数乘积88=8×11,则该六位数必能同时被811整除。

[解析]

能被8整除的数:

末三位数字能被8整除,

10y能被8整除,

y=4

能被11整除的数:

奇数位数字之和与偶数位数字之和的差能被11整除,

奇数位数字之和-偶数位数字之和=x+0+0-2+1+y=x-y-3=x-4-3=x-7

要让x-7能被11整除,x=7

因此,选B

进阶训练

1.整除的性质

例3:(2008.浙江)

在自然数1至50中,将所有不能被3除尽的数相加,所得的和是:

  

A. 865
B. 866
C. 867
D. 868

C
[题钥]

在自然数150中,将所有不能被3除尽的数相加,由于不能被3整除的数的规律不好找寻,所以可以考虑从在自然数150中,能被3整除的数相加所得的和入手

[解析]

在自然数150中,能被3整除的数,即个位数字之和为3的倍数;

在自然数150中,能被3整除的数369121518……故可以转化为首项为3,末项为48,项数为16,公差为3的等差数列;

在自然数150中,能被3整除的数的和——等差数列求和:

自然数150的和——等差数列求和:

在自然数150中,不能被3整除的数的和:

在自然数150中,不能被3整除的数的和

=自然数150的和-在自然数150能被3整除的数的和

=-

=

该值的尾数为7

因此,选C

例4:(2007.国考)

有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27公斤。该店当天只卖出一箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了(  )公斤面包。

A. 44
B. 45
C. 50
D. 52

D
[题钥]

在剩下的5箱中饼干的重量是面包的两倍,可知,剩余5箱食品的重量能被3整除。

[解析]

6箱食品的总重量:

8+9+16+20+22+27=102,能被3整除;

卖出的一箱面包的重量

整除的性质(如果数a和数b能同时被数c整除,那么a±b也能被数c整除)可知,6箱食品的总重量,能被3整除,剩余5箱食品的重量能被3整除,卖出的一箱面包的重量必为3的倍数,

即卖出的一箱面包重量只能为927公斤;

剩下的食品重量:

剩下的食品重量为102-9=93102-27=75公斤;

剩下的面包重量:

其中剩下的面包为93÷3=3175÷3=25公斤;

面包的总重量:

则共有面包31+9=4025+27=52公斤;

因此,选D

2.整除特征

例5:(2008.海南)

下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?

A. XYXYXY
B. XXXYXX
C. XYYXYY
D. XYYXYX

A
[题钥]

一定能同时被235整除的数是多少?,该数能同时被235整除,则尾数只能为0,且各个位数之和应能被3整除。

[解析]

能被2整除的数:

末位数为02468

能被5整除的数:

末位数字是05

故既能被2整除又能被5整除的数:

末位数字是0

而根据题意,Y是零并且XY不能同时为零,则Y只能为尾数,

因此排除BD

能被3整除的数:

各个位数之和应能被3整除,A项的各位数之和为3X,一定能被3整除;

C项的各位数之和为2X,不一定能被3整除;

因此,选A

例6:一张旧发票上写有72瓶饮料,总价为x67.9y元,由于两头的数字模糊不清,分别用x、y表示,每瓶饮料的单价也看不清了,那么x=(  )。

A. 1
B. 2
C. 3
D. 4

C
[题钥]

一张旧发票上写有72瓶饮料,总价为x67.9y,注意到x67.9y应该能被72整除。故先将72分解为互质的两因数乘积72=8×9,则该数必能同时被89整除。

[解析]

能被8整除的数:

末三位数字能被8整除,

“79y”能被8整除,

求得,y=2

能被9整除的数:

各位数字和能被9整除,

求得,x=3

所以,选C

习题精炼

开始练习

  学完知识点后就应该进行实战演练了,自我检测中的题目是91UP专家团针对本条知识精选出来的典型题目。题 不在多而在于精,在洞察其万变不离其宗的模式,认真完成自我检测可以事半功倍举一反三。

“数学运算——整除问题”相关知识点

习题精炼

收藏本页